Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287019

RESUMO

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Conformação Proteica em alfa-Hélice , Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
2.
Front Physiol ; 13: 895324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091400

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that generate electrical rhythmicity in special brain neurons and cardiomyocytes. The channels are activated by membrane hyperpolarization. The binding of cAMP to the four available cyclic nucleotide-binding domains (CNBD) enhances channel activation. We analyzed in the present study the mechanism of how the effect of cAMP binding is transmitted to the pore domain. Our strategy was to uncouple the C-linker (CL) from the channel core by inserting one to five glycine residues between the S6 gate and the A'-helix (constructs 1G to 5G). We quantified in full-length HCN2 channels the resulting functional effects of the inserted glycines by current activation as well as the structural dynamics and statics using molecular dynamics simulations and Constraint Network Analysis. We show functionally that already in 1G the cAMP effect on activation is lost and that with the exception of 3G and 5G the concentration-activation relationships are shifted to depolarized voltages with respect to HCN2. The strongest effect was found for 4G. Accordingly, the activation kinetics were accelerated by all constructs, again with the strongest effect in 4G. The simulations reveal that the average residue mobility of the CL and CNBD domains is increased in all constructs and that the junction between the S6 and A'-helix is turned into a flexible hinge, resulting in a destabilized gate in all constructs. Moreover, for 3G and 4G, there is a stronger downward displacement of the CL-CNBD than in HCN2 and the other constructs, resulting in an increased kink angle between S6 and A'-helix, which in turn loosens contacts between the S4-helix and the CL. This is suggested to promote a downward movement of the S4-helix, similar to the effect of hyperpolarization. In addition, exclusively in 4G, the selectivity filter in the upper pore region and parts of the S4-helix are destabilized. The results provide new insights into the intricate activation of HCN2 channels.

3.
Commun Biol ; 5(1): 430, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534535

RESUMO

Hyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics (MD) simulations to show that residue K464 of the C-linker is relevant for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that in the K464E channel, a rotation of the intracellular domain relative to the channel pore is induced, which is similar to the cAMP-induced rotation, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. We suggest that this CL-CNBD rotation is considerably involved in activation-induced affinity increase but only indirectly involved in gate modulation. The adopted poses shown herein are in excellent agreement with previous structural results.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Nucleotídeos Cíclicos , AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Técnicas de Patch-Clamp
4.
Curr Biol ; 31(16): 3575-3585.e9, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34233161

RESUMO

Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Inundações , Canais Iônicos , Estresse Fisiológico , Animais , Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Oócitos , Xenopus
5.
Biophys J ; 120(5): 950-963, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33515603

RESUMO

Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Animais , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Nucleotídeos Cíclicos , Ligação Proteica
6.
J Biol Chem ; 294(47): 17978-17987, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31615893

RESUMO

cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N6-phenyladenosine-3',5'-cyclic monophosphate (N6-Phe-cAMP), N6-benzyladenosine-3',5'-cyclic monophosphate (N6-Bn-cAMP), and N6-benzoyl-adenosine-3',5'-cyclic monophosphate (N6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N6-Phe-cAMP or N6-Bn-cAMP or a steric clash with the aromatic ring in N6-Bnz-cAMP. A reduced apparent affinity of N6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/agonistas , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Arginina/metabolismo , Sítios de Ligação , Ativação Enzimática , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Cinética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Xenopus
7.
J Gen Physiol ; 150(9): 1261-1271, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29959170

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , AMP Cíclico/metabolismo , Feminino , Oócitos , Domínios Proteicos , Xenopus laevis
8.
Sci Rep ; 8: 47000, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29952375

RESUMO

This corrects the article DOI: 10.1038/srep29378.

9.
J Phys D Appl Phys ; 51(44): 443001, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799880

RESUMO

Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.

10.
Sci Rep ; 6: 29378, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27405959

RESUMO

Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Feminino , Ativação do Canal Iônico/fisiologia , Ligantes , Odorantes , Ligação Proteica , Ratos , Xenopus laevis
11.
Biophys J ; 109(11): 2268-76, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26636938

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3',5'-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Nucleotídeos Cíclicos/farmacologia , Subunidades Proteicas/química , Animais , AMP Cíclico/metabolismo , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Conformação Proteica , Subunidades Proteicas/metabolismo , Xenopus laevis
12.
PLoS One ; 10(1): e0116369, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25625648

RESUMO

Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD) of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG) channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.


Assuntos
Proteínas de Bactérias/química , AMP Cíclico/química , GMP Cíclico/química , Canais de Potássio/química , Sítios de Ligação , Cristalografia por Raios X , Ativação do Canal Iônico , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Spirochaeta
13.
PLoS One ; 9(10): e111549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360526

RESUMO

The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos e Sais Biliares/farmacologia , Membrana Celular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/química , Animais , Membrana Celular/efeitos dos fármacos , Clorpromazina/farmacologia , Colesterol/farmacologia , Gadolínio/farmacologia , Camundongos , Picratos/farmacologia , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade , Ácido Ursodesoxicólico/farmacologia , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 111(21): 7855-60, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821777

RESUMO

Cyclic nucleotide-modulated ion channels are molecular pores that mediate the passage of ions across the cell membrane in response to cAMP or GMP. Structural insight into this class of ion channels currently comes from a related homolog, MloK1, that contains six transmembrane domains and a cytoplasmic cyclic nucleotide binding domain. However, unlike eukaryote hyperpolarization-activated cyclic nucleotide-modulated (HCN) and cyclic nucleotide-gated (CNG) channels, MloK1 lacks a C-linker region, which critically contributes to the molecular coupling between ligand binding and channel opening. In this study, we report the identification and characterization of five previously unidentified prokaryote homologs with high sequence similarity (24-32%) to eukaryote HCN and CNG channels and that contain a C-linker region. Biochemical characterization shows that two homologs, termed AmaK and SthK, can be expressed and purified as detergent-solubilized protein from Escherichia coli membranes. Expression of SthK channels in Xenopus laevis oocytes and functional characterization using the patch-clamp technique revealed that the channels are gated by cAMP, but not cGMP, are highly selective for K(+) ions over Na(+) ions, generate a large unitary conductance, and are only weakly voltage dependent. These properties resemble essential properties of various eukaryote HCN or CNG channels. Our results contribute to an understanding of the evolutionary origin of cyclic nucleotide-modulated ion channels and pave the way for future structural and functional studies.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , Família Multigênica/genética , Animais , Clonagem Molecular , AMP Cíclico/metabolismo , Microscopia Confocal , Oócitos/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Homologia de Sequência , Xenopus
15.
Biophys J ; 106(6): 1250-7, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24655500

RESUMO

Ion channels and transporters are membrane proteins whose functions are driven by conformational changes. Classical biophysical techniques provide insight into either the structure or the function of these proteins, but a full understanding of their behavior requires a correlation of both these aspects in time. Patch-clamp and voltage-clamp fluorometry combine spectroscopic and electrophysiological techniques to simultaneously detect conformational changes and ionic currents across the membrane. Since its introduction, patch-clamp fluorometry has been responsible for invaluable advances in our knowledge of ion channel biophysics. Over the years, the technique has been applied to many different ion channel families to address several biophysical questions with a variety of spectroscopic approaches and electrophysiological configurations. This review illustrates the strength and the flexibility of patch-clamp fluorometry, demonstrating its potential as a tool for future research.


Assuntos
Eletrofisiologia/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas de Patch-Clamp/métodos
16.
PLoS Comput Biol ; 8(10): e1002721, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093920

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3',5'-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian model describing the gating of homotetrameric HCN2 channels, we analyzed probability fluxes within this model, including unidirectional probability fluxes and the probability flux along transition paths. The time-dependent probability fluxes quantify the contributions of all 13 transitions of the model to channel activation. The binding of the first, third and fourth ligand evoked robust channel opening whereas the binding of the second ligand obstructed channel opening similar to the empty channel. Analysis of the net probability fluxes in terms of the transition path theory revealed pronounced hysteresis for channel activation and deactivation. These results provide quantitative insight into the complex interaction of the four structurally equal subunits, leading to non-equality in their function.


Assuntos
Canais Iônicos/química , Modelos Químicos , Biologia Computacional , AMP Cíclico/química , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/metabolismo , Isomerismo , Cadeias de Markov , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Subunidades Proteicas
17.
Sci Signal ; 5(232): ra48, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22786723

RESUMO

Olfactory cyclic nucleotide-gated (CNG) ion channels are essential contributors to signal transduction of olfactory sensory neurons. The activity of the channels is controlled by the cyclic nucleotides guanosine 3',5'-monophosphate (cGMP) and adenosine 3',5'-monophosphate (cAMP). The olfactory CNG channels are composed of two CNGA2 subunits, one CNGA4 and one CNGB1b subunit, each containing a cyclic nucleotide-binding domain. Using patch-clamp fluorometry, we measured ligand binding and channel activation simultaneously and showed that cGMP activated olfactory CNG channels not only by binding to the two CNGA2 subunits but also by binding to the CNGA4 subunit. In a channel in which the CNGA2 subunits were compromised for ligand binding, cGMP binding to CNGA4 was sufficient to partly activate the channel. In contrast, in heterotetrameric channels, the CNGB1b subunit did not bind cGMP, but channels with this subunit showed activation by cAMP. Thus, the modulatory subunits participate actively in translating ligand binding to activation of heterotetrameric olfactory CNG channels and enable the channels to differentiate between cyclic nucleotides.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Nervo Olfatório/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Fluorometria , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Ligação Proteica , Ratos
18.
Nat Chem Biol ; 8(2): 162-9, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179066

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric membrane proteins that generate electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are primarily activated by voltage but are receptors as well, binding the intracellular ligand cyclic AMP. The molecular mechanism of channel activation is still unknown. Here we analyze the complex activation mechanism of homotetrameric HCN2 channels by confocal patch-clamp fluorometry and kinetically quantify all ligand binding steps and closed-open isomerizations of the intermediate states. For the binding affinity of the second, third and fourth ligand, our results suggest pronounced cooperativity in the sequence positive, negative and positive, respectively. This complex interaction of the subunits leads to a preferential stabilization of states with zero, two or four ligands and suggests a dimeric organization of the activation process: within the dimers the cooperativity is positive, whereas it is negative between the dimers.


Assuntos
Canais Iônicos/metabolismo , Animais , AMP Cíclico/farmacologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/química , Ligantes , Miócitos Cardíacos , Neurônios , Técnicas de Patch-Clamp , Canais de Potássio , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Subunidades Proteicas
19.
Biophys J ; 99(8): 2488-96, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20959089

RESUMO

Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Animais , Bovinos , GMP Cíclico/metabolismo , Espaço Intracelular/metabolismo , Ativação do Canal Iônico , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Termodinâmica
20.
Neuron ; 67(1): 75-85, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20624593

RESUMO

HCN pacemaker channels are tetramers mediating rhythmicity in neuronal and cardiac cells. The activity of these channels is controlled by both membrane voltage and the ligand cAMP, binding to each of the four channel subunits. The molecular mechanism underlying channel activation and the relationship between the two activation stimuli are still unknown. Using patch-clamp fluorometry and a fluorescent cAMP analog, we show that full ligand-induced activation appears already with only two ligands bound to the tetrameric channel. Kinetic analysis of channel activation and ligand binding suggests direct interaction between the voltage sensor and the cyclic nucleotide-binding domain, bypassing the pore. By exploiting the duality of activation in HCN2 channels by voltage and ligand binding, we quantify the increase of the binding affinity and overall free energy for binding upon channel activation, proving thus the principle of reciprocity between ligand binding and conformational change in a receptor protein.


Assuntos
Fenômenos Biofísicos/genética , Canais Iônicos/metabolismo , Ligantes , Animais , Fenômenos Biofísicos/efeitos dos fármacos , AMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Fluorometria/métodos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Microinjeções/métodos , Oócitos , Técnicas de Patch-Clamp/métodos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Conformação Proteica/efeitos dos fármacos , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...